
PharmacIST - G23

Lucas Pinto - ist1110813
MEIC-A

Instituto Superior Técnico

Miguel Rocha - ist1110916
MEIC-T

Instituto Superior Técnico

1 Mandatory Features

The mandatory functionalities were implemented in total-
ity, allowing users to signup, login, or just use a guest ac-
count, showing the pharmacies in a map with the distinc-
tion of their favourites, the detail pages of pharmacies and
medicines, and the core value of crowdsourcing the stocks
and adding/removing pharmacies and medicines.

There was a detour from specification: it was requested
that the favourite pharmacy’s medicines were to have noti-
fications when updated, but it was decided that it would be
more flexible to allow the user to choose which medicines to
get notifications from, from any pharmacy. In other words,
independently if a pharmacy is favourite, a user only needs
one click to subscribe to the pharmacy’s medicine updates,
receiving a notification every time the stock changes. This,
however, leaves the favourite functionality of a pharmacy to
be only visual. In the real world, if the users claimed prefer-
ence over the specification and after user testing, the fix could
be implemented.

1.1 Backend
The backend was implemented in Kotlin using Spring Boot. It
does not persist data into a database, but good practices were
followed to allow for that functionality to be smoothly imple-
mented. The requests are RESTful and use the Problem JSON
specification, being the client the one to initiate the requests.
For the notifications, Server Sent Events were implemented
to allow for real-time updates whilst avoiding unnecessary
polling.

1.2 Application Flow
1.2.1 Main Screen

The application starts with an initial screen, containing the
name of the application and a button to start. Behind the
scenes, this activity checks if the user is logged in or not. This
information is stored using shared preferences, containing

the user id and token, which allows them to perform certain
actions on the backend. Moreover, the user could have logged
in previously, and the token could be now invalid. Remember
that the backend is a separate component from the applica-
tion, and we cannot consider the token to be valid forever.
The token is validated by issuing a request to the backend and
checking if the response is positive or not. It is also possible
that the user is logged in (the token is present and valid) but
there is no network available. Therefore, the logged in infor-
mation is cleaned, but the user cannot go to the authentication
screen, which would not make sense. Instead, he goes to the
Dashboard screen, in guest mode. Of course, if the token is
invalid, the application navigates to the authentication screen.

At the same time, if the user has Wi-Fi access, the applica-
tion takes this opportunity to download the information about
the pharmacies (along with images). So, if the user discon-
nects after that, the information should be available. Note that
the medicine stock information is not downloaded, as this is
very volatile information, and could change by the minute.
Nonetheless, the server returns a "last updated at" field for
pharmacy medicines, allowing users to logic about how up-
dated a medicine is, as the application is crowdsourced (e.g. a
pharmacy in a village populated by elders that do not use the
application/smartphones, where the only updates are made by
random travellers).

Finally, if the user wants, he can also check the info screen
with both the developer information, with options to navigate
to each individual GitHub repositories, or send an email to
the application support.

1.2.2 Authentication Screen

This activity allows the user to create a new account, log
in, or proceed in guest mode. In case the user disconnects
from the network, already in this activity, a popup appears,
blocking the user from any action, until he re-connects again.
As future work, this could be improved by navigating to the
Dashboard, in guest mode. After the creation of a new user,
log in, or proceeding in guest mode, he will be redirected to

1



the Dashboard Activity, throwing the current activity away
from the Android application stack as the authentication was
done successfully.

1.2.3 Dashboard Screen

This activity uses the Google Maps API to display the map
with the available pharmacies, and user current location (con-
ditional to user permission). The user can focus in his location,
search for a specific place in the world (text search), select a
pharmacy, logout (upper left symbol), search for medicines,
open/close pharmacies (ordered by distance to the user), and
even scan a barcode. Favourite pharmacies appear green in
the screen. The Places API was used to get available world
places (with household precision), and to transform places
into coordinates. If the user is in guest mode, they can do
everything except creating new pharmacies, since it was de-
cided that that is a protected action due to meta moderation.
Otherwise, the user could just long press any place in the map,
and an activity for pharmacy creation is opened with already
resolved pharmacy location.

The place information, displayed in the end of the screen, is
automatically updated, as the user navigates in the map. This
is a nice feature, but one that consumes lots of data. Therefore,
it’s only available if the user is using a Wi-Fi connection.

If the user started the application without Wi-Fi connec-
tion, the cache is empty, and it still remains without network
connection, an error popup is displayed, since it’s virtually
impossible to do anything until data can be retrieved from
the backend. Otherwise, data is displayed in the screen, even
only cached data. Note that pharmacy data should not change
very often. It’s not every day that new pharmacies are created.
Therefore, there is no automatically refresh for pharmacy
data. If the cache is empty and the user suddenly connects to
network, the pharmacies and requested and cached.

When this activity is resumed again, the pharmacies are
refreshed in order to update the list of pharmacies, for instance,
after the user has just created one.

In this activity, only the pharmacies’ own information are
loaded, and not the list of medicines, since this saves a lot of
space. Yet, as future work, this activity should only request
the pharmacies IDs, and not the other information.

1.2.4 Create New Pharmacy Screen

When it comes to creating a new pharmacy, one possibility
would be to use the same activity that required the action:
Dashboard activity. Yet, in the perspective of the user, we
think that makes more sense to use another activity for that,
as, for instance, the back button would result in the termination
of this activity, and the user would return to the Dashboard
activity, like nothing happened. Of course, if the user does
this, the data (field texts, and others) would be lost forever,

which makes sense since the user explicitly requested to go
back to this action.

The address can still be edited in this activity, with support
for world places search, even thought the address comes pre-
filled when the user long pressed a specific place in the map to
create the pharmacy. The activity only allows the user to create
a pharmacy if the user takes a picture. After confirmation, it
finishes.

1.2.5 Pharmacy Panel View

This activity displays the list of medicines, with possibility to
navigate to the Medicine Panel activity. If the user is logged,
they can do all mandatory features specified in the project
description, as well as share the pharmacy and medicine list
over any social network (uses implicit intents for this) or email.
If the devices disconnect the network, the view is updated not
to allow any operation that requires communication with the
backend.

If there is a Wi-Fi connection, the activity starts by re-
questing the list of medicines. Otherwise, it checks if there
are cached medicine information, before starting the peri-
odic refresh. This improves the user experience as the user
won’t probably see a delay before seeing the medicines on
the screen, in case they’re on mobile data.

When this activity starts, a background job (using corou-
tines) is used to keep refreshing the list of medicines, since this
information is relatively volatile. On the contrary, the phar-
macy information is never refreshed, as it shouldn’t change
often, unless the user re-starts the application again with Wi-
Fi enabled, and the cache is refreshed. For this, polling was
used, with different period times, depending if the user is on
Wi-Fi or Mobile data.

A new activity should be used to create a new medicine,
just as explained in the Pharmacy Panel View section. Yet,
due to time constraints, that was not implemented, and the
same activity is used for the medicine creation, whilst still
achieving intended functionality.

1.2.6 Medicine Panel view

This activity uses the user location to display the closest
pharmacies to the user, that have the medicine in question.
If the user didn’t activate the location until it arrives here
(localization cached not available), a popup (with possibility
to close) is shown, and as long as the location is available, the
activity loads the closest pharmacies (ordered by distance)
and shows them, with possibility to open the Maps to navigate
to them. Since the location is being refreshed, if the user starts
this activity again, a new list of pharmacies is obtained.

1.3 Application Architecture
In most activities, the paradigm is the same. The code is
divided in 3 main components:

2



Activity that contains logic and creates Composable Views

Views that use Jetpack Compose to draw the UI

View Model that holds UI state (e.g. pharmacies/medicines
lists). It is also responsible for making use of the back-
end service to make requests, because the View Model
has access to the View Model coroutine scope, a mecha-
nism of Kotlin for creating lightweight threads in order
to make asynchronous work. The View Model is not
coupled to the Activity, allowing it to keep living if the
activity is re-created.

To hold state, Mutable State Flows are used, a feature of
Jetpack compose that allows for UI to re-render when-
ever a Mutable State changes.

The Ok-HTTP package is used to make HTTP requests
to the backend server, in opposition to retrofit, since it offers
more control on how the response is handled. To make it more
efficient, the suspendCoroutine() function is used, suspending
the coroutine that issues the request until the response arrives,
and an IO Ok-HTTP thread wakes the coroutine again. A pos-
sibility would be to use an active waiting: Corroutine.sleep(),
but it would be less efficient.

When a request is made, it’s possible that it results in a
failure, for whatever reason. Therefore, some requests return
a Result (either Success or Failure), allowing for the display
of an error message to the user. As mentioned in the backend
section, the backend offers a RESTful API, with the Problem-
JSON media type, allowing to inform about any existing er-
rors.

1.4 Caching

Caching was implemented, as part of the project requirements.
Room was chosen as the technology to hold cached Pharmacy
information, Medicine information, and medicine stock infor-
mation. Every time this data is requested, it’s immediately
stored in cache.

For Pharmacy and Medicine images, Room, being an SQL
based DB, could be used to store the bytes. Yet, we used a
more appropriate storage: the Android external file system,
but not accessible to other applications, as there is no motive
to.

1.5 Network

To deal with network state, since most activities use and need
to know about the change in the state, Mutable State Flows
are used, in order for the composable functions to be updated
whenever the state changes and execute decisions accordingly.
The 3 possible, and necessary, states are: on Wi-Fi, on Mobile
Data, and not connected to network.

1.6 Location
We use two methods of localization:

• The Google Maps API, which deals with the symbol that
shows the location in the map, and gives the coordinates
when the user taps in a specific location, which is nec-
essary to translate that position to an address, using the
Places API (requires the coordinates);

• The FusedLocationProviderClient, which gives us access
to the user localization coordinates, allowing to request
the Backend pharmacies by proximity. This library, also,
allows retrieving the cached localization, which is handy
if the user granted the necessary localization permis-
sions, but, then, turned off the localization. In this case,
we used the cached localization instead. Finally, duo
to time constraints, we didn’t fix the bug on the Dash-
board activity, where the app should have requested the
user localization periodically, in order to update nearby
pharmacies. We only used the last localization, which
is the one that is obtained when the user turns on the
localization service.

1.7 Resource Frugality
As said previously, pharmacy data is only fetched when re-
quired. For instance, in the application startup to refresh the
cache when the user is on Wi-Fi. Another place is in the Dash-
board activity to show the nearby pharmacies, as you want
to search where the map is, as well as in the medicine’s view
because there may be pharmacies that have not been fetched
prior that have said medicine. One could think "why not re-
fresh the pharmacy information on metered data?" - well,
pharmacy data changes very rarely, and it’s much more prob-
able that the user will get Wi-Fi faster than a new Pharmacy
is created.

On the contrary, since the medicine stock is much more
volatile, it is refreshed in a timely manner. If the user has
internet connection, a background job will keep refreshing
medicine the stock just for that pharmacy. Note that, only
the stock is refreshed, and not the medicine info. The time
interval between refreshes varies if the user is on Wi-Fi or
metered data. Duo to time constraints, we didn’t have time to
implement a setting option to change the interval time.

A pharmacy and medicine image is only automatically
fetched if the user is using Wi-Fi, otherwise, if on metered
data, a placeholder is shown to load the image from the Back-
end server.

To use resources more efficiently, collections are paginated
by the server, i.e., only returning a portion of the data instead
of everything. For example, in the map activity, only 20 phar-
macies whose location appears on the map are loaded, and
not others that are far away - if we’re at IST we only want
the Lisbon ones, not the French. The same happens in the

3



Pharmacy View for the medicines list and on the Medicines
View for the pharmacies list, where data is only loaded as
scroll occurs, but also by pre-fetching to hide latency.

1.8 Limitations

The backend, as it is not the main focus of the course, was not
a priority. It does not persist data across restarts, and always
starts with a predefined sample state.

For instance, if a logged user creates a pharmacy, the server
re-starts, and the Application maintains the pharmacy in cache,
it will display it in the Google Maps map. However, when the
user clicks it, an exception is thrown, finishing the activity,
because we’re trying to access a pharmacy that does not exist
in the server.

In normal application behaviour, pharmacies are not
deleted, therefore such exception would never exist.

2 Additional Components

2.1 Securing Communication

The backend is behind the Caddy reverse proxy, which takes
care of the certificate management automatically, using Let’s
Encrypt, for an acquired domain. The used server (one of the
group member’s computers) also hosts other applications, and
the reverse proxy allows the usage of the same domain/ip
for multiple applications, not requiring the use of a dedicated
ip:port for the PharmacIST backend.

2.2 Meta Moderation

Following the specification, whenever a user flags a pharmacy,
it will stop appearing for them. This is done, in the backend,
by filtering out the pharmacies the authenticated user has
flagged. Because the endpoint is public, it will only filter
(and allow the user to flag) if they are authenticated. When a
threshold is reached (3 for demonstration simplicity purposes),
the pharmacy is disabled, not showing up for anyone, not even
guests.

Any user that has a threshold of disabled pharmacies (3 for
demonstration simplicity purposes) will have their account
disabled and be locked out of it - the login is disabled.

2.3 User Accounts

A simple solution was set up to allow accounts to be persisted
on the backend. It simply uses a Map< Id,User >, and stores
information in plaintext, as this is not a cybersecurity class.
It also stores the list of favourite pharmacies and subscribed
medicines.

This way, app clients can log in and register new accounts,
and even use their account in different mobile phones.

2.4 Social Sharing To Other Apps

Two buttons are displayed on the pharmacy details page: one
with the email icon, for users to share through email; and one
with a share icon, where users can select the application they
want to share to (like Instagram, Facebook, Twitter, ...)

2.5 UI Adaptability: Rotation

Whilst the application was only tested on three devices (two
physical and the emulator), the design allows for screen size
variations. It also supports rotation, updating the components
so that the content is seen clearly.

2.6 UI Adaptability: Light/Dark Theme

Jetpack Compose’s components adapt themselves to the
theme being used by the system. For future work, a toggle for
changing the theme independently of the system preference
would be a more flexible solution.

2.7 Translations

Android Resources are used for translations: one for English
(default), and Portuguese. Only static strings were translated,
i.e., strings that come from the backend are not translated,
like Medicine names, and such. Places API and Google Maps
also translate the addresses by themselves. As future work,
an API for translation could be used for this, so when a new
pharmacy comes to the backend, it would translate it into the
different supported languages.

2.8 Ratings

Ratings were fully implemented, by showing a star rating
bar in the pharmacy details view, that when the user clicks
a star, it will rate it, automatically refreshing the histogram.
Needless to say, guests may not rate a pharmacy, only view
the rating.

The rating is shown all over the app when a pharmacy is
displayed, just like the distance if the user has given permis-
sion.

3 Further Work

3.1 Dynamic Data Localization

By using the Google Translate API (or similar) to translate
user generated data, as currently the developed application
only has internationalization support for the static strings (e.g.
buttons, titles)

4



3.2 Recommendations
No recommendation system was implemented, nor is the cur-
rent database storing what is purchased by certain users, only
the current stock of the pharmacies’ medicines. In the future,
an update to the backend service could present users with
pharmacies and medicines that are closer to the users’ needs,
without any changes to the Android frontend.

5


	Mandatory Features
	Backend
	Application Flow
	Main Screen
	Authentication Screen
	Dashboard Screen
	Create New Pharmacy Screen
	Pharmacy Panel View
	Medicine Panel view

	Application Architecture
	Caching
	Network
	Location
	Resource Frugality
	Limitations

	Additional Components
	Securing Communication
	Meta Moderation
	User Accounts
	Social Sharing To Other Apps
	UI Adaptability: Rotation
	UI Adaptability: Light/Dark Theme
	Translations
	Ratings

	Further Work
	Dynamic Data Localization
	Recommendations


