
SpecialVFX@Cloud

Cloud Computing and Virtualization
Project - 2023-24

MEIC / METI / MECD - IST - ULisboa

1 Introduction

The goal of this project is to design and implement a service hosted in an elastic public cloud to give support to
an hypothetical Special VFX Studio. The service is meant to execute a number of computationally-intensive
tasks, namely: generation of photo-realistic images, using ray-tracing; and application of effects to images,
using image processing algorithms. You are given an already built simplified Java application (solely aimed
at generating a realistic CPU load) that handles the following types of requests:

• RenderImage: returns the rendering of a viewport (a rectangle of specific variable size) that is part of
a 3D-model scene received as input;

• BlurImage: returns a blurred copy of the image received as input;

• EnhanceImage: returns a copy of the image received as input with highlighted edges;

With this application, your task is to deploy it in the cloud and scale it by increasing or decreasing the
number of workers according to the number and complexity of user requests. You will be using two types of
cloud deployments: EC2 instances and Lambda functions. Note that while EC2 instances are cheaper per
processed request, they suffer from a long startup time. On the other hand, Lambdas are more expensive
per processed request but fast to start. Therefore, you need to balance invocations between the two types
of deployments to minimize request latency and cost. Measuring the complexity of requests will be done
by instrumenting the application code with Javassist. Complexity is an estimate of the amount of work
involved in processing the request. As you will notice, simply using processing time instead of estimating the
complexity won’t help since processing time quickly becomes unpredictable when multiple tasks execute at
the same time and compete for possibly overcommitted resources. The project specification is accompanied
by a Frequently Asked Questions document available at: https://tinyurl.com/CNV-23-24-FAQ.

2 Architecture

The SpecialVFX@Cloud system should run within the Amazon Web Services ecosystem. The system (see
Figure 1) will be organized in four main components:

• Workers receive web requests to perform a SpecialVFX@Cloud operation. There will be a varying
number of identical VMs and Lambdas running SpecialVFX@Cloud operations;

• Load Balancer (LB) is the entry point of the system. It receives all web requests, and for each one,
it selects an active VM to serve the request and forwards it to that server. In alternative, it can also
trigger a Lambda function invocation;

• Auto-Scaler (AS) is in charge of collecting system performance metrics and, based on them, adjusting
the number of active VM instances;

• Metrics Storage System (MSS) uses Amazon DynamoDB to store request performance metrics.
These will help the LB choose the most appropriate worker.

2.1 Workers

Workers are responsible for executing operations. In SpecialVFX@Cloud , there are two types of workers:
VM workers (EC2 instances), and FaaS workers (Lambda invocations), depicted in Figure 1. VM workers
must execute SpecialVFX@Cloud code instrumented with Javassist, while in FaaS workers this is optional.

1

https://tinyurl.com/CNV-23-24-FAQ


Figure 1: Architecture of SpecialVFX@Cloud

It is your task to use the JavassistAgent tool to instrument request handling to extract execution metrics
regarding request complexity. The main difference between both types of workers is how the invocation is
performed.

VM workers implement a web server that receives requests directly from the LB. These requests include
the input and parameters which are then passed to the application code. The result is returned to the LB
and then returned to the user.

FaaS workers implement an invocation handler that receives Lambda invocations triggered by the LB.
Similarly to VM worker requests, Lambda invocations include an input and parameters and return an output
after applying the requested operation.

2.2 Load Balancer (LB)

The LB is the only entry point into the system. It receives requests and either selects one of the active
VM workers to handle each of the requests or triggers a Lambda invocation, based on request complexity
estimation. Note that in the final delivery, the LB should itself be a VM instance running a web server
that uses metrics obtained in earlier requests (stored in the MSS) to decide how and where to execute (i.e.
schedule) requests.

The LB should estimate the approximate complexity of requests based on the requests’ parameters com-
bined with data previously stored in the MSS. The LB may know which VM workers are busy, how many
requests there are currently executing in each VM, and how much work is left in each VM taking into account
a request complexity estimate.

2.3 Auto Scaler (AS)

For this project, you will design an auto-scaling component that decides how many web server nodes should be
active at any given moment. You should design and implement an auto-scaling strategy that provides the best
balance between performance and cost. The AS should detect that the VM workers are overloaded and start
new instances and, on the other hand, reduce the number of nodes when the load decreases. For simplicity,
you can deploy both the AS and the LB code in the same VM (and in the same web server application).

2.4 Metrics Storage System (MSS)

SpecialVFX@Cloud should also include a Metrics Storage System that stores load and performance metrics
collected from the worker nodes. These metrics result from running instrumented code which collect relevant
dynamic performance metrics regarding the application code executed (e.g. number of bytecode instructions

2

Miguel Rocha


Miguel Rocha


Miguel Rocha


Miguel Rocha


Miguel Rocha


Miguel Rocha




or basic blocks executed, data accesses, number of function calls executed, and/or others deemed relevant).
These metrics allow estimating the task complexity realistically, irrespective of variable wall-clock time delays
that can be caused by frequent resource overcommit.

The final choice of the metrics extracted, instrumentation code, and structure used to store the metrics
data is thus subject to analysis and decision by the students. As extracting each metric adds overhead due
to the execution of the added instrumented code, students should consider the usefulness/overhead trade-offs
of each and all utilized metrics. The selected storage system can be updated directly or you may resort to
some intermediate transfer mechanism. For realism, you must take into account that continuously querying
and exhaustively iterating this storage system is expensive and may also become a performance bottleneck
for the LB.

3 Design and Implementation Guidelines

• Automate all cloud deployments and delete all cloud resources after each work session;

• Design and experiment with your instrumentation code locally on your or lab PCs to save resources;

• For simplicity, use t2.micro VM instance types and Lambdas with 512 MB of RAM.

• There are multiple possible design options for each of the components required for the project.

– More important than the picked design is the reason for picking it, understand and explain it!

4 Checkpoint

Students may submit an initial implementation of their system by May 17th, 23h59. This version
should support running SpecialVFX@Cloud on multi-threaded VM workers, with at least an AWS-configured
LB and AS operating (no need for lambdas at this stage). Instrumentation gathering metrics should be
working. Ideally, it should also include an initial version of your LB and AS code or pseudocode. Note that
the algorithms for load balancing, auto scaling may not be fully implemented at this stage. However, it is
expected that some logic is already thought out even if simplified. The checkpoint will be evaluated on the
following labs.

The checkpoint submission bundle must include an intermediate report (1-page, double column) clearly
describing: a) what is already developed and running in the current implementation (architecture, data
structures and algorithms); b) the specification of what remains to be implemented or completed (namely
pseudo-code for your final LB and AS algorithms). Students must also provide the link to a short video
demonstrating the functionality of the project against a series of tests to be provided. The report should be
submitted in Fénix until 23:59 on May 18th.

5 Final Submission

The final submission is to be delivered by May 31st, 23h59. It should include a complete implementation
of the system. In addition to the checkpoint, the project should include: i) an instrumentation tool that
balances the instrumentation overhead with the precision of the extracted information; ii) an auto scaling
algorithm that balances cost and performance efficiently; iii) a load balancing algorithm that minimizes cost
and request latency using request complexity estimates based on previous requests.

Student groups should write a final report (up to 5 double column pages after the cover) describing the
implemented solution, clearly explaining and justifying the algorithms, as well as any results, measurements,
charts and analysis that support the design decisions and configurations. Groups are encouraged to provide
information about the experiments conducted while experimenting with different design tradeoffs (e.g., charts,
datasets). Students must also provide the link to a video demonstrating the functionality of the project
against a series of tests to be provided. The report should submitted in Fénix until 23:59 on June 1st.

3

Miguel Rocha


Miguel Rocha


Miguel Rocha



	Introduction
	Architecture
	Workers
	Load Balancer (LB)
	Auto Scaler (AS)
	Metrics Storage System (MSS)

	Design and Implementation Guidelines
	Checkpoint
	Final Submission

