
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Group 35 - SpecialVFX@Cloud
Lucas Diogo Ferreira Pinto - 110813

Miguel Agostinho da Silva Rocha - 110916
Kenneth Brattli - 1108685

ACM Reference Format:
Lucas Diogo Ferreira Pinto - 110813, Miguel Agostinho da Silva Rocha -
110916, and Kenneth Brattli - 1108685. 2018. Group 35 - SpecialVFX@Cloud.
In .ACM,NewYork, NY, USA, 4 pages. https://doi.org/XXXXXXX.XXXXXXX

1 ARCHITECTURE - MAIN FLOW
The execution starts with the Load Balancer, which is deployed in a
single VM, launching, as well, in a separate thread, the AutoScaler.

The data flow starts when a user sends a request to the Load Bal-
ancer. The request is processed and subsequently sent to a worker.
The worker will either be a VM, or a Lambda function.

The lambdas, as stated in the project description, never instru-
ment code. While VMs can instrument code, some of them are
configured to not, for efficiency reasons. The code is instrumented
by using a Javassist tool, which modifies the bytecode of the ap-
plication at compile time, after the VM (and, therefore, the Java
program) starts, to insert hooks. These hooks enable the collection
of performance metrics.

The workers receive and process the requests, and eventually
returning the results to the Load Balancer, which then forwards it
to the client.

When a VMWorker starts, it deploys a thread, that, between time
to time, flashes all collected metrics (a batch), to the DynamoDB,
for efficiency purposes. This avoids the constant access to the DB.
Whenever a request is processed by an instrumented VM worker,
the collected metrics for that request are cached (which will eventu-
ally be sent to the DB, in a batch). Similarly, to enhance efficiency,
the Load Balancer caches metrics retrieved from the database, min-
imizing the need for constant database queries.

2 INSTRUMENTATION METRICS
Currently, only the number of instructions and basic blocks are
being collected. One could say that the number of instructions
alone would be sufficient to measure the request weight. Yet, it is
possible that two different requests produce the same number of
instructions, but differ in the number of basic blocks. The request
with fewer basic blocks should be considered a lighter request, since
it requires fewer optimizations by the JVM machine, duo to the
existence of fewer possible execution branches.

For the Image Processing operations (Blur and Enhance), we
have found that the number of total executed instructions and

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

basic blocks are a function of the image resolution (𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡 ).
For Raytracer requests the analysis is more complex, and will be
addressed in 4.2

3 DATA STRUCTURES
The VM worker caches the request’s metrics in a shared (static)
data structure, which is also used by the Javassist tool (running
in the VM worker) to store the metrics, which groups metrics by
thread.

Grouping metrics by thread is important because a thread pool is
used by the VMworker web server to process the requests, meaning,
threads are re-utilized to fulfil requests. Therefore, each time a
request is fulfilled, the metrics of that thread are stored apart from
the thread (without the information of the thread), to later be flashed
to the DB, and the thread metrics are cleaned, allowing to store
metrics of a new request, that is handled by that thread.

Both the request parameters and execution metrics are stored in
the DynamoDB. Initially, these were also stored in a file, in order
to facilitate the analysis of the algorithms. Yet, this was disabled
duo to efficiency purposes. This allows for their later retrieval to
estimate the cost of each request.

For both the image processing and Raytracer metrics, the request
parameters are stored along with the execution metrics. These
include the height and width for image processing, scene width
and height, window width and height, and the window row and
column offset for ray tracing. When storing these metrics of the
DynamoDB, a UUID was used as the primary key, which is random
generated for each DB entry. Ideally, this should not be necessary,
as the collected metrics should remain consistent for the same
parameters, which should serve as the primary key. However, due
to a bug encountered when attempting to use multiple parameters
as the primary key, we opted to use UUIDs to avoid further delays.

4 REQUEST COST ESTIMATION
Important note: as said in the Instrumentation Metrics section, the
number of instructions, as well as basic blocks, should both be used
to determine the cost of the request. That is why these two values
are collected. Yet, do to time constraints, we didn’t have enough
time to test the system using these two values. Therefore, the cost
estimation for all operations uses only the number of instructions.
This should be addressed as future work.

If a specific request has already been instrumented in the past,
and the metrics are available in the DynamoDB, the stored number
of instructions can be used as the cost of the new request. Otherwise,
the request cost needs to be estimated. For this estimation, metrics
from similar requests are utilized.

First, the Load Balancer checks if enough time has passed since
the last metrics retrieval. If so, it fetches metrics from DynamoDB.
This approach helps to avoid constantly fetching new records from
DynamoDB whenever a new request cost estimate is needed. Then,

2024-06-21 21:31. Page 1 of 1–4.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Lucas Diogo Ferreira Pinto - 110813, Miguel Agostinho da Silva Rocha - 110916, and Kenneth Brattli - 1108685

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

height width number_of_basic_blocks number_of_instructions
637 960 16116381 553925233
686 960 16610907 572325984
407 612 10287399 353533842
639 960 16136565 554676277
493 740 12445533 427767505

Table 1: Offline instrumentation for the Blur image operation

the Load Balancer uses cached metrics to estimate the request cost.
If there are no relevant metrics in the cache, the cost is estimated
based on offline metrics.

Due to time constraints, we did not have time to study what is
considered a similar request. Therefore, for the Image Proc opera-
tions, since the height and width are the only request parameters,
requests with the following parameters were used to estimate the
cost:

• minHeight = imageHeight - 300;
• maxHeight = imageHeight + 300;
• minWith = imageWidth - 300;
• maxWith = imageWidth + 300.

The same approach was applied to the Raytracer’s 6 numbered
parameters: Scene height and width, window height and width, and
Window row and column offset.

4.1 Image Proc request cost estimate
For a given Image Proc request (request to estimate cost), and for
a set of Image Proc previously stored metrics (height, width and
number of instructions), the cost of that request is estimated by first
computing the number of pixels for each stored request (height x
width). The number of instructions per pixel is then calculated and
multiplied by the number of pixels of the new request. This results
in an estimate of the number of instructions needed for the new
request.

If there are no record metrics in the DB, we use an average
of number of instructions per pixel, which was computed offline,
before deploying the system for production. For the Image proc
operations (blur and enhance), we obtained these values by com-
puting the average number of instructions per pixel using offline
instrumented metrics. Specifically, we calculated 1054.19 instruc-
tions per pixel for the blur operation and 79.90 instructions per
pixel for the enhance operation. These values were obtained by
instrumenting in an AWS VM, and using some of the images avail-
able in the resources folder provided in the base project structure.
The detailed metrics for these operations are available in tables 1
and 2, for the blur and enhance operations, respectively.

4.2 Raytracer request cost estimate
For the Raytracer case, since there are multiple parameters (unlike
the image proc that only have two, leading to one, which is the
number of pixels), it’s much harder to compute an estimate cost.
Therefore, we conducted an offline test, where we obtained the
results of the importance of each parameter for the total number of
instructions. An 2(𝑘 − 𝑝) Fractional Factorial Design experiment

height width number_of_basic_blocks number_of_instructions
637 960 1581196 42807779
407 612 984700 26115567
493 740 1205549 32293171
720 960 1666852 45039649
768 512 1254052 32803457
678 960 1623508 43910269

Table 2: Offline instrumentation for the Enhance image op-
eration

Figure 1: The importance of each parameter of the Raytracer
operation, for the cost

Figure 2: The importance of each parameter of the Raytracer
scene, for the cost

was conducted, with the confounded variables being srows, wrows
The results are shown in table 1

With the experimentally obtained parameter costs in 1, the objec-
tive is to reach the number of instructions per parameter unit. For
that, we multiply the total number of instructions, of a request, by
the cost/weight, and through an average we get our solution. This
superficial analysis only took into account the top level parameters.
Most were numbers, but scene is composed of multiple parameters
in itself.

For that, another similar analysis, 2, was performed on the scene’s
parameters. A more in-depth analysis could be performed, as this
one only accounts for the amount of each parameter, and not the
inner parameters of each one. Even more, from the results, we only
care for lighting as it contributes with almost 95% of the scene’s
instructions count. We can neglect the other scene parameters
because their contribution is residual.

If one wants to estimate the cost of a request, but there are no
similar-stored metrics, in order to do the computation above, an
average number of requests (cost) is used, which was computed
offline, issuing different Raytracer requests, and computing the
average of number of instructions (cost). This is not the best ap-
proach, since the Raytracer operations have various parameters,
being, most of them, numeric values. Yet, note that this is only a

2024-06-21 21:31. Page 2 of 1–4.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Group 35 - SpecialVFX@Cloud Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 3: Values obtained in offline tests, performed in an
AWS VM instance, in order to study how the number of par-
allel requests affects the execution time

problem when there are no similar metrics stored, which should
become less of a problem with time. The tests are displayed in table
??. The average number of instructions is 361 855 796.

4.3 Finding the maximum AWS instance
Workload

In order to estimate the maximum load each instance can handle,
tests were performed to determine how long it would take to exe-
cute the requested work. The test was performed by issuing parallel
requests, and recording the total executed basic blocks, number of
instructions, and average of time taken. These tests were conducted
in an AWS t2.micro VM, since it’s the target environment of the
project. The results are shown in ??. We opt to use a workload
equivalent of 4 requests, which results in a waiting time of less
than a minute, making the total workload per VM worker to be
27.272.000.000 instructions.

5 TASK SCHEDULING ALGORITHM (LOAD
BALANCING)

The Load Balancer is deployed as aWeb server that handles requests
using a thread pool. When a new request arrives, the LB searches
for the less loaded VM instance. This is done by iterating across
all registered (created) VM instances, skipping the ones that are
marked for termination (see the Auto Scaler section), and computing
the total cost of that instance, which is done by computing the cost
of each individual request assigned to that instance (requests that
are or going to run on that instance). The less loaded instance is
checked to be valid, by checking if the already accumulated instance
cost, plus the one of the new request to execute, does not exceed the
total instance workload threshold. If it’s valid, the request is sent to
that instance. If one VM instance is valid and still being deployed,
but not yet running, the thread will wait, before sending the request
to the instance. If there isn’t any valid instances, the Load Balancer
launches a new thread that starts a new VM worker, or a lambda
function. If the thread decided to create a VM instance (instead
of launching a Lambda function), while that thread is waiting for
the new instance to be ready, it’s possible that a new instance,
previously considered invalid, or one that was already starting,
becomes available. Therefore, the original thread continues in a
loop, from time to time, checking if there is a new valid instance
to send the request, and if so, it sends the request to that instance.

When the new VM instance is finally running, the thread that
created it, checks if the request was already fulfilled, and, if not,
the request is sent to the newly created VM instance or lambda. Of
course, it’s possible that a new VM instance was launched to handle
the new request, and, after it’s running, a previous invalid instance,
is now able to handle the request, making the newly created VM
instance, useless.

Note that it’s possible that many requests arrive almost at the
same time, and will be handled in parallel. At first sight, this may
appear to be a problem when there are no available instances to
handle some of the requests, because all the threads handling each
request, see at the same time, that there are no available instances
to handle the request), and that this would cause multiple VM
instances to be launched, (one per request), which is not desirable,
since one Vm could satisfy various requests. Therefore, there is a
locking mechanism that prevents multiple requests to launch a VM
instance in parallel. Instead, only one thread, the first to acquire
the lock, will check if there are no available running instances that
could satisfy the request, and, if not, the thread will create launch
a VM (if not a lambda), and release the lock without waiting for
the instance to start. Only then, the next thread will acquire the
lock, and be able to see this newly created instance, if it was indeed
created, and assess if it is able to run the thread request.

5.1 Send to Lambda or to a VM instance?
We decided that only the lighter requests would go to a Lambda
instance, and only if there are no available instances that could
execute the request. Lambdas are more expensive to execute, but
they execute faster, when compared with having to wait for a
new VM instance to be ready. Therefore, if the request is lighter,
it’s worth it to send it to a Lambda, since it will execute quicker,
spending less money than a heavier request. Also, creating a new
VM, in order to execute a lighter request, would result in more time
spent for the instance deploy, than the actual request execution, in
opposition to a heavier request. A light request is the one whose
estimated cost is less than 30% of the average cost of that operation.

6 AUTO-SCALING ALGORITHM
The Auto Scaler runs in an infinite loop, sleeping and waking from
time to time. When it wakes, it iterates across all running instances
and, for the ones marked for termination, and that currently have
no workload (processing 0 requests), terminate that instance. Note
that the VM could have a CPU usage of 100%, and still not executing
useful work (processing requests).

Then, it iterates across all instances again, ignoring the ones that
are marked for termination, or that are still being deployed (not yet
running), and marks the ones that are suitable for termination. If
an instance has a current workload (computed from the requests
that are being executed, at that moment) of less than 30% of the
maximum instance workload, and if that instance is not the only
one available, (excluding the ones marked for termination), the
instance is marked for termination, otherwise, if it’s indeed the last
one available, it’s only marked for termination if the current CPU
usage is less than 50%. It’s important to have at least one instance
running, even with low workload, any new request could arrive,

2024-06-21 21:31. Page 3 of 1–4.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Lucas Diogo Ferreira Pinto - 110813, Miguel Agostinho da Silva Rocha - 110916, and Kenneth Brattli - 1108685

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 3: Results obtained by issuing some Raytracer requests in an AWS VM, in order to estimate the average number of
requests, to be used as an offline heuristic.

#_lights #_instructions scene_height scene_width window_col_offset window_height window_row_offset window_width
3 779 200 300 0 400 0 300
3 471859042 20 100 10 600 20 200
3 651139215 200 400 10 600 0 200
3 779 200 400 0 400 0 300
3 752060914 200 400 0 600 0 300
3 646221254 200 400 10 600 20 200
3 795 400 300 0 400 0 300
3 971480914 200 400 0 600 0 200
3 638278465 200 100 10 600 20 200

and it wouldn’t make sense to have an instance star, execute the
request, and die right afterwards.

6.1 Instance Data
For simplicity purposes, the Load Balancer does not query the AWS,
in order to know the already available VMWorker instances, during
startup. Instead, it is assumed that the Load Balancer is the first to
be created, there are no created AWS VMWorkers, and that it never
fails, as the project description does not mention Load Balancer
(and Auto Scaler) failures. Therefore, the Load Balancer starts with
an empty set of Worker instances, and populates the set as needed.
This set of available instances is shared with the Auto Scaler, since
they both use this data structure.

An instance is described by:
• it’s ID;
• a set of requests;
• a boolean that specifies if the instance will terminate;
• IP and Port.

Upon creation, these fields are set, except for the ID and IP which
are both null. Even without setting up the IP, which is available
only when the instance is in the running state, the Load Balancer
can already see that this instance is going to run, and the amount
of requests the instance has already scheduled, and make decisions
even before the instance is in the running state. When the Load
Balancer decides to send a request to that instance, it appends the
request to the set of requests of the instance, so the other threads,
handling other requests, can use the instance already scheduled set
of requests to estimate the current instance workload.

7 FAULT-TOLERANCE
Each time a request is sent over to a VM or lambda function, to
be executed, in case there is a problem and the response can not
be obtained, the request is re-tried again. Also, to avoid any future
problems with that instance, where the request failed, the instance
is terminated.

2024-06-21 21:31. Page 4 of 1–4.


	1 Architecture - Main Flow
	2 Instrumentation Metrics
	3 Data Structures
	4 Request Cost Estimation
	4.1 Image Proc request cost estimate
	4.2 Raytracer request cost estimate
	4.3 Finding the maximum AWS instance Workload

	5 Task Scheduling Algorithm (Load Balancing)
	5.1 Send to Lambda or to a VM instance?

	6 Auto-Scaling Algorithm
	6.1 Instance Data

	7 Fault-Tolerance

