DADTKY - Group 4

Guilherme Luis Francisco Soares - 96392
Miguel Agostinho da Silva Rocha - 110916
Charalampos Spyridon Botsas - 108794

Instituto Superior Técnico (IST)
Lisbon, Portugal

Abstract

This paper describes the design and implementation
of DADTKV, a distributed transactional key-value store
to manage data objects (each data object being a <key,
value> pair) called Dadlnt, that reside in server memory
and can be accessed concurrently by transactional pro-
grams that execute in different machines. This access to
data will be regulated by using a Lease system. This pa-
per describes the design of the final solution and the mul-
tiple components necessary for the correct implementation
of this system.

1. Introduction

The final solution is divided into the following subpro-
jects:

* Management Console;
¢ Client;

¢ Transaction Manager;
* Lease Manager.

The Management Console is used as the starting point to
run the system. From there, all processes (Client, Transac-
tion Manager and Lease Manager) are launched.

2. Management Console

This process has the task of starting all other processes in
the system. Like in the Client program, this will first iterate
over the configuration file, and store everything in a local
structure. Then, after knowing every process that is going
to be launched, system parameters (ex: time slots, starts,

etc), and fault tolerance, it starts launching the processes
one by one.

Depending on the process, he needs to know several
things. For example, the Lease Manager processes need
to know the set of Lease Manager nodes and also the set of
Transaction Manager nodes. One possibility is to just start
the process and let him read the configuration file. Instead,
we decided to pass that information into the arguments of
each process. This solution has the advantage that the file
will only be parsed once. Every process will receive only
the needed information to run. Each process won’t have the
overhead of having to parse the complete file, just to get the
specific information that is relevant to him.

The Management Console is also the one that decides
what Transaction Manager, each Client, will contact. To do
this, it selects a random Transaction Manager, between all
of them, and assigns it to the Client.

3. Client

When the Client starts it parses its configuration file
given by the Management Console and stores the read com-
mands on a structure, in order to execute them in a con-
tinuous loop. The Client is able to do 3 commands: Wait,
Transaction, Status. The last 2 are commands issued to the
Transaction Manager assigned to the Client by the Manage-
ment console. The transaction is composed of a list of reads
and writes to a set of DadInts. When issuing a transaction
the Client waits for its conclusion and prints the result.

4. Transaction Manager

The Transaction Manager is responsible for executing
Client transactions and maintaining the results of the trans-
actions in storage. There can be multiple TM nodes execut-
ing concurrently, so there is a need to synchronize transac-
tions that modify the same DadlInt object.

4.1 Leases

When a Client wants to execute a transaction with a set
of writes, the Transaction Manager that receives it will try
to obtain a Lease for the keys modified by the transaction
(if he doesn’t have them already — explained later). The
Lease has the following format:

Lease {
TmId: string,
SequenceNumber: int,
EpochNumber: int,
Keys: string[]

}

With the combination of the first 2 fields, we can identify
the Lease. Each Transaction Manager will use a different
sequence number every time they request a Lease. The ad-
dition of the Epoch number is to prevent Lease Managers
from reaching a consensus on the same Lease twice without
them needing to keep a state of previous consensus.

4.2 Execution of Transactions

Every TM node keeps a queue of Leases for every Key
in the DADTKYV data storage. When the Transaction Man-
ager learns the result of the Lease Manager consensus for
the next expected epoch, (received a Quorum of messages
with the same ordered list of leases from n/2 4 1 different
nodes, where n is the number of LM nodes), he can append
the new leases to the end of the queues. To emphasize, the
Lease Manager consensus is added in ascending order to
the queues, from the consensus with lower epoch number to
higher.

If the TM has the necessary Lease to execute its trans-
action, he will propagate the transaction that he wants to
execute to the other Transaction Managers. There are mul-
tiple problems that can happen in this communication, so to
ensure that all TMs end up with the same state we used an
abstraction of the Uniform Reliable Broadcast. The neces-
sary guarantee that the Uniform Reliable Broadcast gives us
that a simpler Reliable Broadcast doesn’t is:

Uniform Agreement: For any message m, if a process de-
livers m, then every correct process delivers m

In our system, it means that a faulty Transaction Manager
node will not report to a client that he executed a trans-
action without being sure that every correct node will de-
liver/execute the same transaction. To implement this prop-
erty every Transaction Manager node has to wait for a Quo-
rum of the same transaction in order to execute them. Now
this Quorum will be /2 + 1, where n is the number of TM
nodes. The other guarantees implemented are:

Validity: If pl and p2 are correct processes, then any
broadcast by p1 is eventually delivered by p2

No creation: No message delivered unless broadcast
No duplication: No message is delivered more than once.

All of these properties were provided by our Perfect Link
implementation.

When propagating a transaction a Transaction Manager
verifies if there are any Leases conflicting with his Lease.
If there are he appends a boolean indicating that the other
TM nodes can release the Lease associated with his trans-
action after executing it. This means that a TM can keep
its Lease and execute other client requests that involve the
same Dadlnt keys if there are no conflicts. In order to do
that the Transaction and Lease need to be identified further
with a Transaction Counter:

Transaction {
TmId: string,
SequenceNumber: int,
TransactionCounter: int,
Writes: DadInt/[]

}

Every time the Transaction Managers execute a transaction
that doesn’t have the boolean release set to true, they incre-
ment the Lease Transaction Counter on the Lease associated
with that transaction.

4.3 Liveness

In order to guarantee liveness in the system we need to
make sure that a Lease can be released if a Transaction Man-
ager crashes, is delayed due to network problems or simply
didn’t release its lease due to not being aware of Lease con-
flicts. Enter the Release Lease process, which will happen
if a TM node suspects other TM holding a Lease or if he
detects that there are other pending conflicting Leases after
executing a transaction that doesn’t release the associated
Lease. Similar to the Propagate Transaction process, we
can leverage the Uniform Agreement property of the Uni-
form Broadcast to ensure that if a process releases a Lease
then every correct process will eventually release the Lease
too. When broadcasting the Release Lease message, the TM
sends along with the Lease to be released the last write ex-
ecuted with that Lease. This ensures that when the Quorum
of Release Lease messages are delivered to every correct
TM, every one of them will have the most recent transac-
tion executed with that Lease, so the eventual consistency
of the system is ensured. Is worth noting that as soon a TM
node receives a Release Lease request he stops accepting
any more transactions associated with that Lease. When a

TM node gets its Lease released without being able to exe-
cute its transaction it returns a single DadInt with an abort
key.

5. Lease Manager

The Lease Managers are responsible for executing a con-
sensus algorithm in order to decide on a value. This value
will be an ordered list of Leases, that will be delivered to
the Transaction Managers.

5.1. Lease Requests

As mentioned before a Lease is identified by an Epoch
Number to prevent being added to multiple instances of
consensus. So when a Lease request is received, the Lease
Manager checks if the epoch in the request is decided, and
discards it if it is.

5.2. Paxos: Consensus Algorithm

To achieve consensus the algorithm chosen was Paxos.
Every time a timeslot passes, a new instance of consensus
is launched with an epoch number associated. This doesn’t
mean that the previous consensus instances are aborted. In
fact, multiple instances of Paxos might run at the same time.
This can happen if the system experiences network latency
during some time periods, resulting in messages involved in
a given epoch being delayed so the consensus doesn’t ter-
minate until the next time slot. The Paxos algorithm has 3
types of processes: Proposers, Acceptors, Learners. In this
implementation, each LM node will have the 3 roles. Ad-
ditionally, the Transaction Manager nodes will be Learners
of the consensus too.

5.2.1 Prepare

When a node thinks he is the leader, he broadcasts a Prepare
message to all other Lease Manager nodes. The Prepare
message has this format:

Prepare {
ID: int,
EpochNumber: int
}

The ID is a unique identifier that will be equal to the node
index number (assigned at the start by the Management
Console) plus a multiple of the number of Lease Man-
ager nodes to ensure that will always be unique (/D =
nodeIndex+n=*nodesSize). The epoch number is needed
to prevent conflicts between concurrent epochs.

The Acceptors will receive the Prepare message and re-
ply with a message identified with an ID too. When the Pro-
poser receives a Quorum (n/2+1 successful messages from
different Acceptors) he can progress to the Accept phase.
The ID present in the reply will be equal to the highest ID
seen by the Acceptor, meaning that if it is different than the
Prepare message ID then the Prepare was not successful.
Although it is still possible to achieve a Quorum of success-
ful replies, we would probably be rejected in the Accept
phase where the ID is relevant too. So we have the option to
try immediately by sending another Prepare message with
a higher ID, however, in our implementation we add a de-
lay before retrying. This is done to mitigate the problem
where 2 “’leader” nodes would block each other on the Pre-
pare and Accept phase, by retrying with higher IDs every
time they are rejected preventing the consensus from pro-
gressing. This way we give § time for the other node to
progress before retrying.

A successful reply can have an Accepted Value attached
if the Acceptor already accepted a value before, that will
be used by the Proposer in the Accept phase. This is done
in order to ensure the property described on Paxos Made
Simple [1]:

P2: If a proposal with value v is chosen, then every higher-
numbered proposal that is chosen has value v.

5.2.2 Accept

When a Quorum of Prepare replies is reached, if no value
was adopted from the majority of Acceptors that replied,
a new Paxos value is created, consisting of the Lease Re-
quests made by the Transaction Managers for this epoch
ordered by arrival. Then the Proposer, broadcasts Accept
messages to the Acceptors with its Paxos value. Because
in our implementation the Proposers are Acceptors too, the
Proposer accepts his own value, and, therefore, he counts
this as an Accept message.

When a Proposer receives an Accept message reply, in-
dicating that the Accept message ID is outdated (meaning
that the Acceptor promised to another leader with a higher
ID), it stops the broadcasting and will retry the Prepare with
the same retry mechanism described in the Prepare phase.

When a Acceptor receives an Accept message, it checks
if he promised to a Proposer with a higher message ID (
rejecting if so), and if not, broadcasts the Accepted value to
all the Learners (LM and TM nodes). He also updates his
highest Accepted Value if the new value has a higher ID, in
order to be used in the Prepare phase when piggybacking
the Accepted value.

Note that this doesn’t mean a new value was decided,
since, as Learners the TM and LM nodes will still have
to wait for a Quorum of Accepted Values from n/2 + 1
different nodes. Important to mention that this Quorum is

not dependent on the ID attached to the Accepted value, in
Paxos the decision is made, not on the Accepted value ID,
but rather on the Paxos value[1].

5.2.3 Lease Managers as Learners

Despite the Lease Managers don’t need to know which
value was decided, it is convenient for them to know if an in-
stance has already achieved consensus in order to stop more
unnecessary retries. Therefore, whenever a request is sent
to a Lease Manager node, related to an epoch that is already
decided, he notifies the node that made the request that the
epoch was ended.

5.2.4 Transaction Managers as Learners

For the Transaction Managers to know the decided value,
there are two options. The first is for them to get notified by
an LM with the decided Paxos value. Yet, if the Lease Man-
agers can be learners, so the Transaction Managers can be.
This way, the round of Accepted messages is not wasted.

6. Simulation Of Suspected Nodes And Server
Crashes

When a node is suspecting or is suspected by another
one, it means that they are not able to communicate with one
another. Therefore, to simulate this situation, our system
throws exceptions on incoming messages from suspected
nodes. A crashed process does the same thing, whenever
he receives a message he responds with an exception. So
in reality, the node will continue to run but will ignore all
requests related to him.

7. Conclusions

With this project, we managed to put into practice all
the topics lectured in the theory classes. The most difficult
task of this project was to handle all the possible unpre-
dictable events that may happen during network communi-
cation, and still be able to ensure the correctness of the sys-
tem. Also, besides applying the basic Paxos, we also con-
sidered some optimizations, that don’t affect correctness,
meaning they are not essential to the system: Delay on the
retry to ensure a better chance of progression; the discard of
message from done epochs (due to Lease Managers being
Learners too) reducing processing time.

References

[1] L. Lamport. Paxos made simple. pages 1-11, November
2001.

